Как устроен глаз и как он работает? Как возникают близорукость и дальнозоркость?

Аудио imageОболочка глаза состоит из трех слоев. Первая оболочка — наружная, плотная, к которой крепятся мышцы, управляющие движением глаза. Она состоит из склеры, основная функция которой заключается в защите тонкой организации нашего зрительного аппарата, и роговицы — прозрачной части склеры, через которую свет попадает в глаз. Роговица имеет искривленную светопреломляющую поверхность, похожую на линзу и позволяющую фокусировать изображение в глазу. По сути роговица работает как объектив фотоаппарата и именно поэтому она прозрачна, сферична и не имеет кровеносных сосудов.

Вторая — это сосудистая оболочка или хориоидеа. Она питает сетчатку и восстанавливает постоянно распадающиеся зрительные вещества. Расположена хориоидеа под склерой и включает в свой состав радужку и ресничное тело. В самом ее центре находится зрачок, т.е. отверстие в тканях глазного яблока. Радужка представляет собой тонкую подвижную диафрагму, находится прямо напротив зрачка и состоит из мышц, которые управляют количеством света, попадающим в глаз, изменяя размер зрачка. Примерно так, как это происходит в объективе хорошего фотоаппарата. Отметим, что сама радужка почти не пропускает свет.

Третья оболочка называется сетчаткой и о ней мы подробней расскажем ниже. Эта именно та часть глаза, в которой осуществляется восприятие света и передачу полученной информации в мозг.

Хрусталик глаза

Хрусталик имеет форму двояковыпуклой прозрачной и эластичной линзы, которая заставляет свет фокусироваться на сетчатке, которая находится под хрусталиком. Форма этой «линзы» может меняться с помощью ресничной мышцы, что позволяет человеку фокусировать зрение на близких и дальних объектах. Снаружи хрусталик покрыт очень тонкой защитной оболочкой, которая защищает его от внешних факторов.

Стекловидное тело

Стекловидное тело — это похожее на гель прозрачное вещество, заполняющее пространство между хрусталиком и сетчаткой в глазу. Оно занимает около 2/3 объёма глазного яблока. На 99% стекловидное тело состоит из воды. Передней поверхностью, на которой имеется ямка, стекловидное тело прилегает к задней поверхности хрусталика; на остальном протяжении стекловидное тело соприкасается с внутренней ограничивающей мембраной сетчатки.

Сетчатка

Сетчатка — это чувствительный к свету слой нервной ткани, находящийся на задней внутренней поверхности глазного яблока. Сетчатка создает изображение, проектируемое на нее с помощью роговицы и хрусталика, и преобразует его в нервные импульсы, посылаемые в мозг. Человеческая сетчатка способна проводить 10 — 100 млн измерений в секунду, а данные, полученные таким образом, обрабатывают свыше миллиарда нейронов коры головного мозга. Причем чувствительность сетчатки такова, что она может регистрировать даже очень небольшое количество фотонов.

В центре сетчатки находится оптический нерв — круглая или овальная зона примерно в 2 х 1.5 мм. От центра оптического нерва радиально расходятся основные кровеносные сосуды сетчатки. В области диска зрительного нерва светочувствительных элементов нет, поэтому это место не дает зрительного ощущения и называется слепым пятном.

Левее этой зоны на расстоянии примерно 4.5 — 5 мм находится овальное, красноватое пятно без кровеносных сосудов — центральная ямка сетчатки (фовеа), которая является центром макулы.

Макула или желтое пятно — самая главная часть сетчатки, она отвечает за центральное зрение, поскольку содержит большое количество рецепторов. Она ответственна за дневное зрение, поэтому нарушение ее деятельности существенно ухудшает зрение.

Слои сетчатки

imageСетчатка имеет очень сложную структуру и содержит множество видов нейронов. Прежде чем достигнуть клеток, воспринимающих свет и преобразующих его в электрические сигналы, свету необходимо преодолеть все слои сетчатки и только после этого воздействовать на слой фоторецепторов.

Всего в настоящее время различают 10 слоев сетчатки. Основные слои — это слой пигментного эпителия и слой фоторецепторов (светочувствительных клеток). За ними следуют пограничная мембрана, наружный ядерный слой, внешний плексиформный слой, внутренний ядерный слой, внутренний плексиформный слой, слой ганглиозных клеток, слой аксонов нейронов и внешняя пограничная мембрана. Давайте чуть подробнее рассмотрим эти слои.

Слой 1. Пигментный эпителий

Пигментный эпителий — это самый наружный слой сетчатки, прилежащий непосредственно к сосудистой оболочке и отделенный от нее т.н. мембраной Бруха. Слой пигментного эпителия простирается от зрительного нерва над всей оптической частью сетчатки. Он состоит из плотно упакованных клеток, содержащих большое количество пигмента. Эти клетки имеют форму шестигранной призмы и обычно организованы в линию. Они являются частью т.н. гемато-ретинального барьера, который предотвращает проникновение в ткань сетчатки крупных молекул из кровеносных сосудов.

Пигментный эпителий в сетчатке обеспечивает четкость и контрастность изображений, которые различает человек. Этот слой представляет собой некое подобие чёрной камеры пленочного фотоаппарата, в котором исчезают блики и переотражения света.

К функция этого слоя относится также ввод питательных веществ в сетчатку и отвод продуктов распада, в частности, погибших светочувствительных клеток.

Слой 2. Светочувствительные клетки или фоторецепторы

Этот слой состоит из клеток в форме колбочек и палочек, которые являются первыми нейронами в составе сетчатки. Основная их функция – это преобразование световых ощущений, получаемых из внешней среды, в электрические сигналы, обрабатываемые головным мозгом.

Палочки — это цилиндрические образования длиной 40-50 мкм, количество которых в сетчатке составляет примерно 120 млн. Они отвечают за наше зрение при плохом освещении, например, ночью, и отличаются высокой чувствительностью. При этом эти клетки не обеспечивают достаточной остроты зрения, поскольку сразу несколько палочек совместно используют одно соединение с зрительным нервом. Палочки равномерно распределены по сетчатке, но отсутствуют в желтом пятне (макуле).

Колбочки в основном сконцентрированы именно в центральной ямке желтого пятна и активизируются только при ярком освещении. В нашей сетчатке их около 7 млн. Их функция — обеспечение центрального зрения и распознавание цветов. Среди колбочек выделяют три особых класса: колбочки, ответственные за восприятие зелёной, красной и синей частей спектра соответственно.

Поскольку они очень чувствительны к высокой интенсивности освещения, то они плохо различают цвета в темноте. Именно колбочки отвечают за нашу остроту зрения, поскольку они «подключены» к зрительному нерву поодиночке.

     

НЕРВНЫЕ КЛЕТКИ СЕТЧАТКИ

Кроме фоторецепторов, сетчатка содержит еще несколько видов нервных клеток.

Биполярные клетки — клетки зрительной системы, вертикально соединяющие через синапсы* одну колбочку или несколько палочек зрительной системы с одной ганглиозной клеткой.

Амакриновые клетки — слой интернейронов сетчатки, которые получают входные сигналы от биполярных нейронов и других амакриновых клеток и посылают сигналы ганглиозным клеткам и другим биполярным клеткам. Эти клетки составляют 70 % входов в ганглиозные клетки сетчатки.

Горизонтальные клетки — слой ассоциативных нейронов сетчатки. Они располагаются в сетчатке сразу за фоторецепторами и отдают им большое количество дендритов (разветвленных отростков), которые, переплетаясь, образуют сплошное кружево.

Ганглиозные клетки — нейроны сетчатки, способные генерировать нервные импульсы в отличие от других типов нейронов сетчатки. Эти клетки граничат со стекловидным телом и образуют слой сетчатки, который первым получает свет. Ганглиозные клетки завершают «трёхнейронную рецепторно-проводящую систему»: фоторецептор — биполярный нейрон — ганглиозная клетка.

Клетки Мюллера – глиальные** клетки сетчатки глаза. Это вторые по частоте клетки сетчатки после нейронов.

* Синапс — место контакта между двумя нейронами или между нейроном и получающей сигнал клеткой.

**Глия — вспомогательные клетки нервной ткани. Они составляют окружение для нейронов, обеспечивая условия для передачи нервных импульсов, а также осуществляя часть метаболических процессов нейрона.

Дополнительные слои сетчатки

Слой 3. Наружная пограничная мембрана

Он представляет собой тонкую пленку, через которую во внешнее пространство (пространство между слоем колбочек и палочек и пигментным эпителием сетчатки) проникают отдельные сегменты фоторецепторов.

Слой 4.  Наружный ядерный (зернистый) слой

Этот слой образуется ядрами фоторецепторов — колбочек и палочек.

Слой 5. Наружный плексиформный слой

В нем находятся отростки палочек и колбочек, которые здесь контактируют между собой, а также биполярными клетками и горизонтальными клетками. Это слой, который еще называет сетчатым, выполняет очень простую функцию — он отделяет два ядерных, т. е. наружный и внутренний слои, друг от друга.

Слой 6. Внутренний ядерный (зернистый) слой.

Его образуют ядра дополнительных нервных клеток сетчатки — биполярных, амакриновых, горизонтальных клеток и клеток Мюллера (подробнее о функциях этих клеток см. врезку)

Слой 7.  Внутренний плексиформный слой

Этот слой состоит из многочисленных переплетенных отростков разных нервных клеток. Это последняя ступень обработки информации внутри сетчатки перед направлением в зрительные центры в мозге.

Слой 8. Ганглиозные клетки

В этом слое находятся клетки, которые обеспечивают передачу импульсов фоторецепторов в зрительный нерв, с которым ганглиозные клетки соединены напрямую через свои отростки (аксоны). Эти нервные клетки совершенно прозрачны и легко пропускают свет.

Слой 9. Нервные волокна

Слой состоит из аксонов ганглиозных клеток, которые как каналы передают информацию непосредственно в зрительный нерв.

Слой 10. Внутренняя пограничная мембрана

Это самый внутренний слой сетчатки, прилегающий к стекловидному телу. Покрывает изнутри поверхность сетчатки. Он является основной мембраной, образованной основанием отростков клеток Мюллера.

Макула

Как мы уже отмечали, самым важным участком сетчатки является желтое пятно или макула, которое определяет остроту зрения. Диаметр пятна составляет 5-5,5 мм, оно отличается по цвету от окружающих тканей, поскольку здесь более интенсивно окрашен подлежащий пигментный эпителий.

В центре макулы находится центральная ямка, или фовеа, которая образуется в результате истончения сетчатки. Центральная ямка составляет 5% оптической части сетчатки, но в ней сосредоточено до 10% всех колбочек. В середине центральной ямки лежит ямочка — углубление диаметром 0,2-0,4 мм, она является местом наибольшей остроты зрения, содержит только колбочки (около 2500 клеток).

О компании —>

  • Преимущества
  • Представительства
  • Партнеры
  • Реквизиты
  • Вакансии
  • Статьи
  • Сертификаты
  • Оплата банковской картой курьеру
  • Правила покупки
  • Политика конфиденциальности

Преимущества Представительства Партнеры Реквизиты Вакансии Правила покупки Информационная поддержка Сертификаты —>

  • Контактные линзы
    • Acuvue
    • Adria
    • Air Optix
    • Biofinity
    • Biomedics
    • Biotrue
    • Clariti
    • Dailies
    • MyDay
    • Optima
    • Proclear
    • Pure Vision
    • SofLens
  • Категории линз
    • Однодневные
    • 2 недели
    • 1 месяц
    • 3 месяца
    • 6 месяцев
    • Астигматические
    • Мультифокальные
    • Цветные
  • Все бренды

Растворы для линз Капли для глаз Аксессуары Наборы

Каталог товаров Скидки Акции Доставка и оплата Контакты Правила покупки

—> О компании / Статьи / Строение глаз —> —> Строение глаз

Глаза напрямую связаны с мозгом и нервной системой. При сравнении устройства глаза с тем, как устроены современные оптические аппараты, например, фотоаппарат или телевизионная, киносъемочная камеры, мы обнаружим между ними определенное сходство. Глаз – это тело, имеющее шарообразную, немного сплюснутую форму (глазное яблоко), его диаметр составляет 23-25 мм. Окружен глаз твердой прочной оболочкой белого цвета, которая называется склерой. Она выступает как защита глаз от механических повреждений. В простонародье ее называют белком глаза.

Глазные яблоки находятся рядом с мозгом, они расположены в глазных впадинах черепа. Их строение одинаковое, с мозгом они связаны нервными волокнами довольно сложным образом. Состоит глаз из 2-х частей – зрительной и оптической. К оптической части относятся зрачки, представляющие собой круглые отверстия в радужке. Сквозь них свет попадает внутрь глазных яблок.

Радужка – это сложная сосудистая ткань, которая соединена со склерой. Расцветка радужной оболочки определяет цвет глаз человека: голубые, серые, карие, зеленые – с разными оттенками. В радужной оболочке есть мышечные волокна, связанные с нервной системой человека, которые бессознательно уменьшают размер зрачка при ярком свете до 2 мм и, наоборот, увеличивают его размер при уменьшенной яркости до 8 мм. По сути, зрачки глаз представляют собой живые диафрагмы.

Роговица – это прозрачная твердая гладкая оболочка, толщина которой где-то 1 мм. Она имеет форму сферической чашечки, диаметр которой где-то 12 мм. Роговая оболочка – это продолжение склеры. За радужкой расположено упругое прозрачное тело, называемое хрусталиком. Его окружают мышцы, которые присоединены к нему и к склере.

Хрусталик – это маленькая двояко выпуклая линза, диаметр которой составляет 8-10 мм. Ее передняя поверхность, которая обращена к зрачку, не такая выпуклая, как задняя. Пространство между радужкой и роговой оболочкой заполнено водянистой жидкостью, а за хрусталиком глазное яблоко заполнено студенистым прозрачным веществом – это стекловидное тело.

Вышеописанные 4 среды – роговая оболочка, водянистая жидкость, стекловидное тело и хрусталик – преломляют свет (особенно сильно его преломляет хрусталик). Вместе они составляют оптическую систему глаза, выполняющую роль сложного объектива. «Объектив» глаза аналогично объективу фотоаппарата дает действительное, перевернутое, уменьшенное изображение предметов. А на сетчатке глаза, аналогично фотопластинке фотоаппарата, образуется изображение. Именно с этого и начинается зрительное восприятие.

Каким будет размер изображения на сетчатке, зависит лишь от угла зрения, потому, когда нужно увидеть детали предмета, его приближают к глазам. Увеличивается угол зрения, и можно легко различить все мелкие детали. Еще большее приближение предмета к глазам, чтоб рассмотреть мельчайшие детали бесполезно и даже вредно, поскольку хрусталик уже не справится с аккомодацией изображения деталей на сетчатку.

С данной проблемой можно справиться, используя оптические приборы: очки, лупу, микроскоп, телескоп или бинокль. Они, совместно с оптическим устройством нашего глаза, увеличивают угол зрения, благодаря чему на сетчатку попадает увеличенное изображение очень маленьких или вообще не видимых не вооруженным глазом объектов. Используя одни оптические приборы можно увидеть очень мелкие объекты, к примеру, микробы, бактерии, мельчайшие частицы определенного вещества. Такие приборы как микроскоп или лупа, как бы «увеличивают», размер рассматриваемых предметов. При помощи других можно отчетливо наблюдать наземные предметы, удаленные от нас, рассматривать их мелкие детали: подробности рельефа на Луне, далекие звезды и туманности во Вселенной. Приборы типа телескопа, бинокля или зрительной трубы как будто бы «приближают» к нам те предметы, на которые мы смотрим.

Анализаторы

С первого дня появления ребёнка на свет зрение помогает ему познавать окружающий мир. С помощью глаз человек видит чудесный мир красок и солнца, зримо воспринимает колоссальный поток информации. Глаза дают человеку возможность читать и писать, знакомиться с произведениями искусства и литературы. Любая профессиональная работа требует от нас хорошего, полноценного зрения.

На человека постоянно действует непрерывный поток внешних раздражителей и разнообразная информация о процессах внутри организма. Понять эту информацию и правильно отреагировать на большое число происходящих вокруг событий позволяют человеку органы чувств. Среди раздражителей внешней среды для человека особенно большое значение имеют зрительные. Большая часть наших сведений о внешнем мире связана со зрением. Зрительный анализатор (зрительная сенсорная система) является важнейшим из всех анализаторов, т.к. он даёт 90% информации, которая идёт к мозгу от всех рецепторов. При помощи глаз мы не только воспринимаем свет и узнаём цвет объектов окружающего мира, но и получаем представление о форме предметов, их удалённости, размерах, высоте, ширине, глубине, иначе говоря, об их пространственном расположении. И всё это благодаря тонкому и сложному строению глаз и их связям с корой головного мозга.

Строение глаза. Вспомогательный аппарат глаза

Глаз — находится в орбитальной впадине черепа — в глазнице, сзади и с боков окружён мышцами, которые его двигают. Он состоит из глазного яблока со зрительным нервом и вспомогательных аппаратов.

Глаз — самый подвижный из всех органов человеческого организма. Он совершает постоянные движения, даже в состоянии кажущегося покоя. Мелкие движения глаз (микродвижения) играют значительную роль в зрительном восприятии. Без них невозможно было бы различать предметы. Кроме того, глаза совершают заметные движения (макродвижения) — повороты, перевод взора с одного предмета на другой, слежение за движущимися предметами. Различные движения глаза, повороты в стороны, вверх, вниз обеспечивают глазодвигательных мышцы, расположенные в глазнице. Всего их шесть. Четыре прямые мышцы крепятся к передней части склеры — и каждая из них поворачивает глаз в свою сторону. А две косые мышцы, верхняя и нижняя, прикрепляются к задней части склеры. Согласованное действие глазодвигательных мышц обеспечивает одновременный поворот глаз в ту или иную сторону.

Орган зрения нуждается в защите от повреждений для нормального развития и работы. Защитными приспособлениями глаз являются брови, веки и слёзная жидкость.

Бровь — парная дугообразная складка толстой кожи, покрытая волосами, в которую вплетаются лежащие под кожей мышцы. Брови отводят пот со лба и служат для защиты от очень яркого света. Веки закрываются рефлекторно. При этом они изолируют сетчатку от действия света, а роговицу и склеру — от каких-либо вредных воздействий. При моргании происходит равномерное распределение слёзной жидкости по всей поверхности глаза, благодаря чему глаз предохраняется от высыхания. Верхнее веко больше, чем нижнее, и его поднимает мышца. Веки закрываются за счёт сокращения круговой мышцы глаза, имеющей циркулярную ориентацию мышечных волокон. По свободному краю век располагаются ресницы, которые защищают глаза от пыли и слишком яркого света.

Слёзный аппарат. Слёзная жидкость вырабатывается специальными железами. Она содержит 97,8% воды, 1,4% органических веществ и 0,8% солей. Слёзы увлажняют роговицу и способствуют сохранению её прозрачности. Кроме того, они смывают с поверхности глаза, а иногда и век попавшие туда инородные тела, соринки, пыль и т.п. В слёзной жидкости содержатся вещества, убивающие микробов через слёзные канальцы, отверстия которых расположены во внутренних уголках глаз, попадает в так называемый слёзный мешок, а уже отсюда — в носовую полость.

Глазное яблоко имеет не совсем правильную шаровидную форму. Диаметр глазного яблока составляет примерно 2,5 см. В движении глазного яблока принимает участие шесть мышц. Из них четыре прямые и две косые. Мышцы лежат внутри глазницы, начинаются от её костных стенок и прикрепляются к белочной оболочке глазного яблока позади роговицы. Стенки глазного яблока образованы тремя оболочками.

Оболочки глаза

Снаружи оно покрыто белочной оболочкой (склерой). Она самая толстая, прочная и обеспечивает глазному яблоку определённую форму. Склера составляет приблизительно 5/6 часть наружной оболочки, она непрозрачна, белого цвета и частью видна в пределах глазной щели. Белковая оболочка — очень прочная соединительнотканная оболочка, которая покрывает весь глаз и защищает его от механических и химических повреждений.

Передняя часть этой оболочки прозрачная. Она называется — роговицей. Роговица имеет безупречную чистоту и прозрачность благодаря тому, что постоянно протирается мигающим веком и промывается слезой. Роговица — единственное место в белковой оболочке, через которое внутрь глазного яблока проникают лучи света. Склера и роговица — довольно плотные образования, обеспечивающие глазу сохранение формы и предохранение его внутренней части от различных внешних вредных воздействий. За роговицей находится кристально прозрачная жидкость.

Изнутри к склере прилегает вторая оболочка глаза — сосудистая. Она обильно снабжена кровеносными сосудами (выполняет питательную функцию) и пигментом, содержащим красящее вещество. Передняя часть сосудистой оболочки называется радужной. Находящийся в ней пигмент обусловливает цвет глаз. Окраска радужки зависит от количества пигмента меланина. Когда его много — глаза тёмно- или светло-карие, а когда мало — серые, зеленоватые или голубые. Людей с отсутствием меланина называют альбиносами. В центре радужки есть небольшое отверстие — зрачок, который, суживаясь или расширяясь, пропускает, то больше, то меньше света. Радужка отделяется от собственно сосудистой оболочки ресничным телом. В толще его находится ресничная мышца, на тонких упругих нитях которой подвешен — хрусталик — прозрачное тело, похожее на лупу, крошечная двояковыпуклая линза диаметром 10 мм. Он преломляет лучи света и собирает их в фокусе на сетчатке. При сокращении или расслаблении ресничной мышцы хрусталик меняет свою форму — кривизну поверхностей. Это свойство хрусталика позволяет чётко видеть предметы как на близком, так и на далёком расстоянии.

Третья, внутренняя оболочка глаза — сетчатая. Сетчатка имеет сложное строение. Она состоит из светочувствительных клеток — фоторецепторов и воспринимает свет, поступающий в глаз. Она расположена только на задней стенке глаза. В сетчатке различают десять слоёв клеток. Особенно важное значение имеют клетки, получившие название колбочек и палочек. В сетчатой оболочке палочки и колбочки расположены неравномерно. Палочки (около 130 млн.) отвечают за восприятие света, а колбочки (около 7 млн.) — за цветовое восприятие.

Палочки и колбочки имеют в зрительном акте различное назначение. Первые работают на минимальном количестве света и составляют сумеречный аппарат зрения; колбочки же действуют при больших количествах света и служат для дневной деятельности аппарата зрения. Различная функция палочек и колбочек обеспечивает высокую чувствительность глаза к очень высоким и низким освещенностям. Способность глаза приспосабливаться к разной яркости освещения называется адаптацией.

Глаз человека способен различать бесконечное разнообразие цветовых оттенков. Восприятие многообразия цветов обеспечивают колбочки сетчатки. Колбочки чувствительны к цветам только при ярком свете. При слабом освещении восприятие цветов резко ухудшается, и все предметы в сумерках кажутся серыми. Колбочки и палочки действуют вместе. От них отходят нервные волокна, образующие затем зрительный нерв, выходящий из глазного яблока и направляющийся в головной мозг. Зрительный нерв состоит примерно из 1 млн. волокон. В центральной части зрительного нерва проходят сосуды. В месте выхода зрительного нерва палочки и колбочки отсутствуют, вследствие чего свет этим участком сетчатки не воспринимается.

Зрительный нерв (проводящие пути)

Сетчатка глаза является первичным нервным центром обработки зрительной информации. Место выхода из сетчатки зрительного нерва называется диском зрительного нерва (слепое пятно). В центре диска в сетчатку входит центральная артерия сетчатки. Зрительные нервы проходят в полость черепа через каналы зрительных нервов.

На нижней поверхности головного мозга образуется перекрест зрительных нервов — хиазма, но перекрещиваются только волокна, идущие от медиальных частей сетчаток. Эти перекрещивающиеся зрительные пути называются зрительными трактами. Большинство волокон зрительного тракта устремляются в латеральное коленчатое тело, головного мозга. Латеральное коленчатое тело имеет слоистое строение и названо так потому, что его слои изгибаются наподобие колена. Нейроны этой структуры направляют свои аксоны через внутреннюю капсулу, затем в составе зрительной радиации к клеткам затылочной доли коры больших полушарий возле шпорной борозды. По этому пути идет информация только о зрительных стимулах.

Функции зрения

Системы Придатки и части глаза Функции
Вспомогательные Брови Отводят пот со лба
Веки Защищают глаза от световых лучей, пыли, пересыхания
Слёзный аппарат Слёзы смачивают, очищают, дезинфицируют
Оболочки глазного яблока Белочная
  • Защита от механического и химического воздействия.
  • Вместилище всех частей глазного яблока.
Сосудистая Питание глаза
Сетчатка Восприятие света, светорецепторы
Оптическая Роговица Преломляет лучи света
Водянистая влага Пропускает лучи света
Радужная оболочка (радужка) Содержит пигмент, придающий цвет глазу, регулирует отверстие зрачка
Зрачок Регулирует количество света, расширяясь и суживаясь
Хрусталик Преломляет и фокусирует лучи света, обладает аккомодацией
Стекловидное тело Заполняет глазное яблоко. пропускает лучи света
Световоспринимающая (зрительный рецептор) Фоторецепторы (нейроны)
  • Палочки воспринимают форму (зрение при слабом освещении);
  • колбочки — цвет (цветовое зрение).
Зрительный нерв Воспринимает возбуждение рецепторных клеток и передаёт в зрительную зону коры головного мозга, где происходит анализ возбуждения и формирование зрительных образов

Глаз как оптический прибор

Параллельным потоком световое излучение попадает на радужная оболочку (выполняет роль диафрагмы), с отверстием, через которое свет поступает в глаз; эластичный хрусталик — это своеобразная двояковыпуклая линза, фокусирующая изображение; эластичная полость (стекловидное тело), придающая глазу сферическую форму и удерживающая на своих местах его элементы. Хрусталик и стекловидное тело обладают свойствами передавать структуру видимого изображения с наименьшими искажениями. Регулирующие органы управляют непроизвольными движениями глаза и приспосабливают его функциональные элементы к конкретным условиям восприятия. Они изменяют пропускную способность диафрагмы, фокусное расстояние линзы, давление внутри эластичной полости и другие характеристики. Управляют этими процессами центры в среднем мозгу с помощью множества чувствительных и исполнительных элементов, распределенных по всему глазному яблоку. Измерение световых сигналов происходит во внутреннем слое сетчатки, состоящем из множества фоторецепторов, способные преобразовывать световое излучение в нервные импульсы. Фоторецепторы в сетчатке распределены неравномерно, образуя три области восприятия.

Первая — область обзора — находится в центральной части сетчатки. Плотность фоторецепторов в ней наивысшая, поэтому она обеспечивает четкое цветное изображение предмета. Все фоторецепторы в этой области по своему устройству в принципе одинаковы, отличаются они только избирательной чувствительностью к длинам волн светового излучения. Одни из них наиболее чувствительны к излучениям (средняя части), вторые — в верхней части, третьи — в нижней. У человека есть три вида фоторецепторов, реагирующих на синие, зеленые и красные цвета. Здесь же, в сетчатке, выходные сигналы этих фоторецепторов совместно обрабатываются в результате чего усиливается контраст изображения, выделяются контуры объектов и определяется их цвет.

Объемное изображение воспроизводится в коре головного мозга, куда направляются видеосигналы от правого и левого глаза. У человека область обзора охватывает всего в 5°, и только в ее пределах он может осуществлять обзорно-сравнительные измерения (ориентироваться в пространстве, распознавать объекты, следить за ними, определять их относительное расположение и направление движения). Вторая область восприятия выполняет функцию захвата целей. Она располагается вокруг области обзора и не дает четкого изображения видимой картины. Ее задача — быстрое обнаружение контрастных целей и изменений, происходящих во внешней обстановке. Поэтому в этой области сетчатки плотность обычных фоторецепторов невысока (почти в 100 раз меньше, чем в области обзора), зато имеется множество (в 150 раз больше) других, адаптивных фоторецепторов, реагирующих только на изменение сигнала. Совместная обработка сигналов тех и других фоторецепторов обеспечивает высокое быстродействие зрительного восприятия в этой области. Кроме того, человек способен быстро улавливать малейшие движения боковым зрением. Функциями захвата управляют отделы среднего мозга. Здесь интересующий объект не рассматривается и не распознается, а определяется его относительное расположение, скорость и направление движения и даётся команда глазодвигательным мышцам — быстро повернуть оптические оси глаз так, чтобы объект попал в зону обзора для детального рассмотрения.

Третью область образуют краевые участки сетчатки, на которые не попадает изображение объекта. В ней плотность фоторецепторов самая маленькая — в 4000 раз меньше, чем в области обзора. Ее задача — измерение усредненной яркости света, которая используется зрением как точка отсчета для определения интенсивности попадающих в глаз потоков света. Именно поэтому при различном освещении зрительное восприятие меняется.

В самом простом смысле зрение — это в первую очередь два глаза, которые получают и обрабатывают информацию об окружающем нас мире. На самом деле человеческое зрение, разумеется, устроено гораздо сложнее, и информация от органов чувств (то есть глаз) проходит несколько этапов обработки: как самим глазом, так и далее — мозгом. Вместе с офтальмологической клиникой 3Z рассказываем, как зрительная система человека формирует изображение действительности, и объясняем, почему мы не видим мир перевернутым, маленьким, трясущимся и разделенным на две части.

Из школьного курса физики вы можете помнить про линзы — приборы из прозрачного материала с преломляющей поверхностью, способные, в зависимости от своей формы, собирать или рассеивать попадающий на них свет. Именно линзам мы обязаны тому, что в мире существуют фотоаппараты, видеокамеры, телескопы, бинокли и, конечно, контактные линзы и очки, которые носят люди. Человеческий глаз — это точно такая же линза, а точнее — сложная оптическая система, состоящая из нескольких биологических линз.

image
Проекция объекта через двояковыпуклую линзу

Первая из них — роговица, внешняя оболочка глаза, наиболее выпуклая его часть. Роговица — это вогнуто-выпуклая линза, которая принимает лучи, исходящие из каждой точки предмета, и передает их дальше через переднюю камеру, заполненную влагой, и зрачок к хрусталику. Хрусталик, в свою очередь, представляет собой двояковыпуклую линзу, по форме напоминающую миндаль или сплющенную сферу.

Двояковыпуклая линза — собирающая: лучи, проходящие через ее поверхность, собираются за ней в одну точку, после чего формируется копия наблюдаемого предмета. Интересный момент состоит в том, что изображение объекта, сформированное на заднем фокусе такой линзы, — действительное (то есть соответствует тому самому наблюдаемому предмету), перевернутое и уменьшенное. Изображение, которое формируется за хрусталиком, поэтому, точно такое же.

То, что изображение уменьшенное, позволяет глазу видеть объекты, по величине в несколько десятков, сотен и тысяч раз превосходящие его по размеру. Другими словами, хрусталик компактно складывает изображение и в таком же виде отдает его сетчатке, выстилающей бо́льшую часть внутренней поверхности глаза — места заднего фокуса хрусталика. Вместе роговица и хрусталик, таким образом, — это компонент зрительной системы, который собирает рассеянные лучи, исходящие от объекта, в одну точку и формирует их проекцию на сетчатке. Строго говоря, никакой «картинки» на сетчатке на самом деле нет: это всего лишь следы фотонов, которые затем преобразуются рецепторами и нейронами сетчатки в электрический сигнал.

image
Внутреннее строение глаза

Этот электрический сигнал затем проходит в головной мозг, где обрабатывается отделами зрительной коры. Все вместе эти отделы отвечают за то, чтобы преобразовать сигналы о расположении фотонов — единственную информацию, которую получает сам глаз — в имеющие смысл образы. При этом мозг — система взаимосвязанная, и за то, как мы воспринимаем то, что происходит в действительности, отвечают не только наши глаза и зрительная система, но и другие органы чувств, способные получать информацию. Мы не видим мир перевернутым благодаря тому, что у нашего вестибулярного аппарата есть информация о том, что мы стоим ровно, двумя ногами на земле, и дерево, растущее из земли, соответственно, перевернутым быть не должно.

Подтверждение этому — эксперимент, который поставил на самом себе американский психолог Джордж Стрэттон (George Stratton) в 1896 году: ученый изобрел специальное устройство — инвертоскоп, чьи линзы также могут переворачивать изображение, на которое смотрит тот, кто их носит. В своем устройстве Стрэттон проходил неделю и при этом не сошел с ума от необходимости передвигаться в перевернутом пространстве. Его зрительная система быстро адаптировалась под измененные обстоятельства, и уже через пару дней ученый видел мир таким, каким привык видеть его с детства.

Другими словами, в мозге нет специального отдела, который переворачивает изображение, поступившее на сетчатку: за это отвечает вся зрительная система головного мозга, которая, с учетом информации от других органов чувств, позволяет нам точно определить ориентацию объектов в пространстве.

Клиники 3Z – крупнейшая в России сеть офтальмологических клиник, которая насчитывает 36 диагностических центров и клиник в восьми регионах России. За 15 лет работы офтальмохирурги 3Z провели более 210 тысяч операций, из них около 65 тысяч — по передовым технологиям коррекции зрения.

Первые и главные нейроны, участвующие в обработке светового стимула, — это фоторецепторы (светочувствительные сенсорные нейроны). Два основных вида фоторецепторов в сетчатке — это палочки и колбочки, получившие свои название за палочко- и колбочкообразную форму, соответственно. Палочки и колбочки заполнены светочувствительными пигментами — родопсином и йодопсином соответственно. Родопсин в разы чувствительнее к свету, чем йодопсин, но только к свету с одной длиной волны (около 500 нанометров в видимой области) — именно поэтому палочки, содержащие родопсин, отвечают за зрение человека в темноте: они улавливают даже мельчайшие лучи, помогая нам различать очертания предметов, при этом не позволяя точно определить их цвет. А вот за цветовосприятие уже как раз отвечают «дневные» фоторецепторы — колбочки.

Светочувствительный йодопсин, входящий в состав колбочек, бывает трех видов в зависимости от того, к свету с какой длиной волны он чувствителен. В нормальном состоянии колбочки человеческого глаза реагируют на свет с длинной, средней и короткой волной, что примерно соответствует красно-желтому, желто-зеленому и сине-фиолетовому цветам (а если проще — красному, зеленому и синему). Колбочек, которые содержат тот или иной вид йодопсина, в сетчатке разное количество, и их баланс как раз и помогает различать все краски окружающего мира. В случае, когда колбочек с тем или иным видом йодопсина, недостаточно или просто нет, говорят о наличии дальтонизма — особенности зрения, при котором недоступно распознавание всех или некоторых цветов. Вид дальтонизма напрямую зависит от того, какие именно колбочки «не работают», но самым распространенным у человека считается дейтеранопия — при ней отсутствуют колбочки, чей йодопсин чувствителен к свету со средней длиной волны (то есть плохо воспринимают зеленый цвет или не воспринимают его вообще).

image
Красное яблоко при нормальном зрении и яблоко при дейтеранопии

При этом палочки и колбочки покрывают не весь соответствующий слой поверхности сетчатки: в ней присутствует так называемое слепое пятно, не содержащее светочувствительных рецепторов вообще. Так как их нет, свет в границах пятна обрабатывать нечему — именно поэтому те объекты, которые попадают в «поле зрения» слепого пятна, для человека невидимы. Зрение любого человека (к счастью или к сожалению) не позволяет увидеть эти слепые пятна, но некоторые заболевания приводят к появлению скотомы (то есть слепого участка в поле зрения) и вне соответствующего места на сетчатке.

image
Изображение яблока с центральной скотомой

Сигнал, получаемый и обрабатываемый фоторецепторами, затем переходит к другому слою нейронов — биполярным клеткам. Такие клетки — своеобразные посредники, которые связывают колбочки и палочки с ганглионарными клетками — нейронами сетчатки, которые генерируют нервные импульсы и затем передают их по зрительному нерву в зрительную кору головного мозга через латеральное коленчатое тело (небольшой бугорок на поверхности таламуса).

Латеральное коленчатое тело, принявшее сигналы от ганглионарных клеток сетчатки, сначала передает их первичной зрительной коре — наиболее эволюционно древней части зрительной системы головного мозга (для удобства и лаконичности ее также называют V1). В этом месте начинается формирование действительного изображения того, что происходит вокруг нас, — фотоны, принятые глазом, начинают обретать форму, и цвет, очертания, наличие движения и другие аспекты изображения превращаются в электрическую активность. В зависимости от того, что эти сигналы передают (движение объекта в пространстве или же его форму), они далее посылаются для обработки по вентральному и дорсальному пути в другие отделы зрительной коры. К примеру, средняя височная зрительная область (ее порядковый номер — пять, то есть кратко ее называют V5) считается частью дорсального пути, так как отвечает за обработку движения, а четвертая зона (V4) отвечает за обработку цвета, поэтому относится к вентральному пути.

Современные технологии помогают решить проблемы со зрением. Для коррекции близорукости, дальнозоркости и астигматизма в клиниках 3Z собраны 6 лучших мировых практик коррекции зрения: ReLEx SMILE, ReLEx FLEx, Femto Super LASIK, Super LASIK, ФРК и имплантация факичных интраокулярных линз. Каждому пациенту технология подбирается индивидуально, чтобы обеспечить наилучший результат. Поэтому острота зрения после операции часто составляет 120% или даже 150%. Отделы, отвечающие за обработку информации от органов чувств и, как мы уже выяснили, помогающие воссоздавать картину реального мира зрительной системе, — не единственные участки мозга, которые участвуют в процессе зрения. Важную роль также играет и моторная кора головного мозга, отвечающая за обработку движений. Важна моторная кора потому, что глаза все время двигаются: перемещение взгляда помогает следить за движущимся изображением или рассмотреть то, что не попадает в поле зрения целиком. 

В спокойном состоянии (тогда, когда мы смотрим на статичный предмет или даже на фон) глаза все равно двигаются, совершая очень быстрые синхронные движения (до 80 миллисекунд) — саккады. Информация о том, что глазу нужно изменить положение, посылается к нему из моторной коры. Чуть раньше точно такой же (или, по крайней мере, похожий) сигнал посылается к зрительной коре в качестве так называемой «эфферентной копии». Благодаря этому зрительная кора получает информацию о том, что глаз будет двигаться, еще до того, как это движение начнется — это помогает зрительной коре игнорировать возможные мелкие движения. 

Примерное изображение статичного объекта без стабилизации с помощью эфферентной копии

Поэтому механизм того, как формируется в нашем мозге изображение действительности, — это не только оптика и химические реакции, происходящие на сетчатке. Важнейшую роль в создании этой картинки играет наш мозг — причем не только зрительная кора, которая делает фигуры объемными, отделяет их от фона и раскрашивает в нужные цвета, но и остальные отделы, которые отвечают за жизненно важные функции. В клинике 3Z работают со всеми видами нарушения зрения, возникающими из-за неправильной формы глаза (близорукость и дальнозоркость) или чрезмерной кривизны роговицы (астигматизм). До 15 июля коррекцию зрения в 3Z можно сделать в рассрочку без предварительного взноса и переплат. Акция действует на все виды лазерной коррекции зрения, а также на имплантацию факичных интраокулярных линз (ФИОЛ).

Елизавета Ивтушок

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий